If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+2X-380=0
a = 1; b = 2; c = -380;
Δ = b2-4ac
Δ = 22-4·1·(-380)
Δ = 1524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1524}=\sqrt{4*381}=\sqrt{4}*\sqrt{381}=2\sqrt{381}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{381}}{2*1}=\frac{-2-2\sqrt{381}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{381}}{2*1}=\frac{-2+2\sqrt{381}}{2} $
| 4+6w=6w+12 | | 5(x+1)-3x=5(x+7) | | 5v-4÷10=4÷5 | | 3x=2x18 | | 2x-1=14x-7 | | 11n+(-3)=13n+13 | | x/(-3)=(-4/15) | | -1=a-3=2 | | 0.333(y+7)=3(y-1) | | 2/7t+1=3/11t-11 | | 0.6+3k/4=5.916 | | 5x=2x=3x=x | | x3+6x-22.5=0 | | -5/y=y-2 | | 5x=2x=3x | | 6x+13=x+13 | | 3/5r+3/10=2r-5/2 | | 7/2÷5/2y=2y-2 | | 18a+6-30=3(2a-4) | | 7v–28=9+3v–1 | | -155.96=-3.5(1+5.8p)-6.3 | | -2x-7=3x+13 | | 6x+9-8x=15-19x+17x-6 | | 7x-12=5x-11 | | 3(4+s)=15 | | 3+5x=1+3x | | 2/3(x+5)-7=x/3 | | 5x-1+x+27=8x+30-4x | | 9+.02x+.0006x^2=0 | | 44x+4+24=38x+4 | | (x+5)=(3x-37) | | 5x+58=113 |